Transaction Data is a dataset that shows how many customer applications we completed, in the preceding month for: first registrations, leases, transfers of part, dealings, official copies and searches. This is based on customer and location.
uktrans_get(
item = "totalApplicationCountByRegion",
region = NULL,
regexp = TRUE,
start_date = NULL,
end_date = NULL,
...
)item to select, see uktrans_avail_items() for
available items.
region to select, see uktrans_avail_regions() for
available regions.
use regular expression in sparql to search for regions.
the start date as YYYY-MM-DD.
the end date as YYYY-MM-DD.
query modifiers passed through rdf_modifiers.
Returns a tibble in long format.
# \donttest{
uktrans_get(item = "totalApplicationCountByRegion", region = "East Anglia")
#> # A tibble: 165 × 3
#> region date totalApplicationCountByRegion
#> <chr> <date> <dbl>
#> 1 East Anglia 2011-12-01 37819
#> 2 East Anglia 2012-01-01 44231
#> 3 East Anglia 2012-02-01 44453
#> 4 East Anglia 2012-03-01 46814
#> 5 East Anglia 2012-04-01 40693
#> 6 East Anglia 2012-05-01 47885
#> 7 East Anglia 2012-06-01 39506
#> 8 East Anglia 2012-07-01 46539
#> 9 East Anglia 2012-08-01 45942
#> 10 East Anglia 2012-09-01 41976
#> # ℹ 155 more rows
# If `region` is left as NULL then it returns all available regions
uktrans_get(item = "totalApplicationCountByRegion")
#> # A tibble: 1,980 × 3
#> region date totalApplicationCountByRegion
#> <chr> <date> <dbl>
#> 1 South East 2011-12-01 214852
#> 2 South East 2012-01-01 247768
#> 3 South East 2012-02-01 250045
#> 4 South East 2012-03-01 271010
#> 5 South East 2012-04-01 233486
#> 6 South East 2012-05-01 267587
#> 7 South East 2012-06-01 222280
#> 8 South East 2012-07-01 263214
#> 9 South East 2012-08-01 255424
#> 10 South East 2012-09-01 233684
#> # ℹ 1,970 more rows
# Quering all available transaction data
uktrans_get(item = uktrans_avail_items())
#> # A tibble: 1,980 × 14
#> region date DFLCount DLGCount FRCount TPCount OSPCount OSWCount
#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 South East 2011-12-01 2969 74122 1846 2010 5859 29053
#> 2 South East 2012-01-01 3950 71168 2106 2874 4571 28591
#> 3 South East 2012-02-01 4071 63747 2229 3118 4811 28164
#> 4 South East 2012-03-01 4126 70021 2382 2578 6183 32853
#> 5 South East 2012-04-01 3802 65445 1821 2055 4306 25757
#> 6 South East 2012-05-01 3951 69133 1993 2426 5113 32780
#> 7 South East 2012-06-01 2940 58046 1838 2138 5478 28140
#> 8 South East 2012-07-01 3675 73408 2271 2769 4697 33578
#> 9 South East 2012-08-01 2978 72609 1959 2549 5114 32433
#> 10 South East 2012-09-01 2951 63909 1837 2376 4882 28948
#> # ℹ 1,970 more rows
#> # ℹ 6 more variables: OSNPWCount <dbl>, OC1Count <dbl>, SIMCount <dbl>,
#> # OSNPPCount <dbl>, OC2Count <dbl>, totalApplicationCountByRegion <dbl>
# }