These functions calculate the scores according to:
score_z
: Normal(z) distribution
score_mad
: Mean absolute deviation
score_t
: t-distribution
score_chi
: chi-distribution
score_z(x, na.rm = getOption("transx.na.rm")) score_mad(x, na.rm = getOption("transx.na.rm")) score_t(x, na.rm = getOption("transx.na.rm")) score_chisq(x, na.rm = getOption("transx.na.rm"))
x |
Univariate vector, numeric or ts object with only one dimension. |
---|---|
na.rm |
A value indicating whether NA values should be stripped before the computation proceeds. |
Returns a vector with the same class and attributes as the input vector.
Because function are known with different names:
score_z
is identical to std_mean
score_mad
is identical to std_median
#> [1] -1.5406578 -1.2838815 -1.0271052 -0.7703289 -0.5135526 -0.2567763 #> [7] 0.0000000 0.2567763 0.5135526 0.7703289 1.0271052 1.2838815 #> [13] 1.5406578score_mad(x)#> [1] -1.3489815 -1.1241513 -0.8993210 -0.6744908 -0.4496605 -0.2248303 #> [7] 0.0000000 0.2248303 0.4496605 0.6744908 0.8993210 1.1241513 #> [13] 1.3489815score_t(x)#> [1] -1.6469149 -1.3234774 -1.0296800 -0.7564749 -0.4971831 -0.2465228 #> [7] 0.0000000 0.2465228 0.4971831 0.7564749 1.0296800 1.3234774 #> [13] 1.6469149